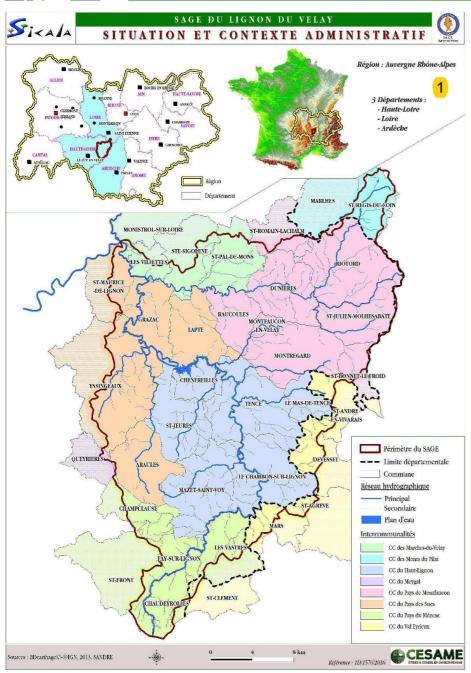


SAGE Lignon du Velay

Séminaire national SAGE Gestion quantitative


Retour d'expérience

25 septembre 2018

Territoire du SAGE Lignon du Velay

36 communes

7 communautés de communes

31 500 habitants sur le bassin versant

708 km²

760 km de cours d'eau

Du massif volcanique du Mézenc au sud (> 1200m altitude)

Il traverse le plateau granitique du Velay oriental (moy 900m d'altitude)

Pour confluer en rive droite de la Loire (460 m d'altitude)

L'élaboration du SAGE

Phase d'émergence

Délimitation du périmètre : arrété inter-préfectoral du 16 octobre 2003

Constitution de la CLE : arrété inter-préfectoral du 15 septembre 2004

Installation de la CLE: 14 avril 2005

20112013 Etat des lieux

Validé le 27 avril 2012

Concertation élargie avec les commissions du SAGE en mars 2013

Validé le 22 mai 2013

Phase d'élaboration

Réalisation de l'étude adéquation besoins / ressources

Phase d'adoption

- Consultation des assemblées : de décembre 2016 à avril 2017
- Enquête publique : du 5 mars au 6 avril 2018
- Approbation :

Etude adéquation besoins /ressources

Q

étude menée en parallèle de l'élaboration des scénarios contrastés et résultats intégrés lors du choix de la stratégie (bureau d'étude CESAME, 2015)

Phase 1 : état des lieux méthode

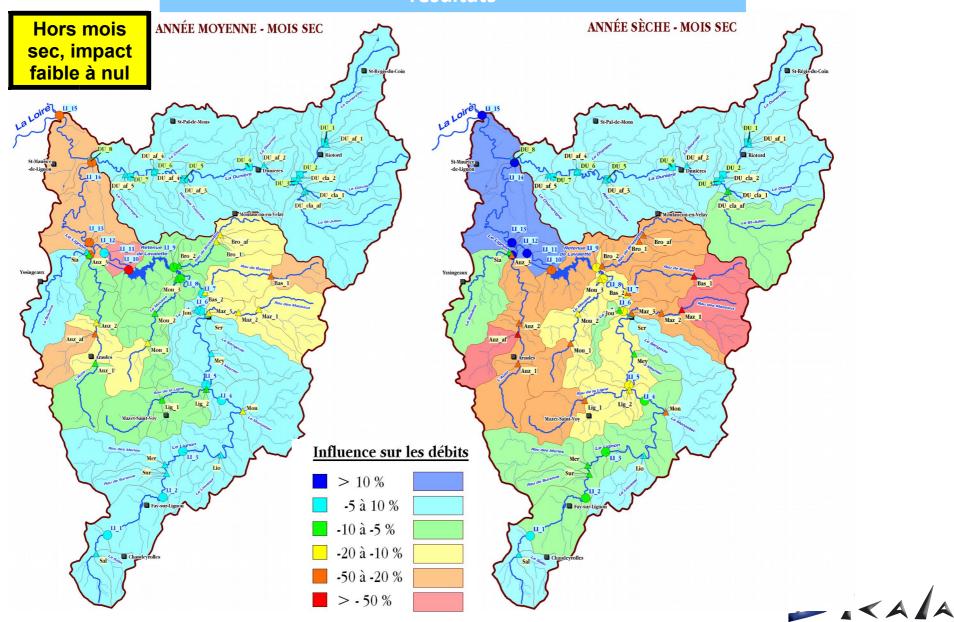
- Estimation fine de la ressource en eau (superficielle) ⇒ calcul à partir de la pluie efficace en faisant intervenir l'effet réserve régulatrice du complexe sol/sous-sol
- à l'échelle de sous-bassins versants sur lesquels se trouve au moins 1 point de calcul du débit à l'exutoire (60 points de calcul au total)
- estimation des débits « naturels » (module, QMNA5, débits mensuels) en année moyenne et sèche
- •Estimation de la pression de prélèvements ⇒ synthèse des prélèvements et restitutions d'eau par sous bassin
- + estimation des besoin en eau théoriques pour les besoins diffus non mesurés (abreuvage, prélèvements dans retenues collinaires, pertes par évaporation)
- •Estimation de l'influence anthropique sur les débits ⇒ calcul des débits influencés (débit naturel prélèvements + rejets) et du taux d'impact sur l'hydrologie

Q

étude menée en parallèle de l'élaboration des scénarios contrastés et résultats intégrés lors du choix de la stratégie (bureau d'étude CESAME, 2015)

Phase 1 : état des lieux résultats

- bassin avec de faibles ressources d'eaux souterraines mobilisables
- *+ de 50 sources captées pour l'AEP en tête de BV (1,73 Mm3/an)
- •3 prises d'eau AEP en rivière (0,65 Mm3/an)
- •Le complexe de barrage Lavalette/ la Chapellette sur le Lignon médian (stockage de 40 Mm³) utilisés pour 1,6 Mm3/an en local + exportations hors BV (AEP)
- *Complétés par des prélèvements diffus dans le milieu estimés à 1Mm3/an pour abreuvage et 0,03 à 0,06 Mm3/an pour irrigation
- •Bilan global des prélèvements seulement 5 % de la ressource annuelle du BV, mais pendant l'étiage et à l'échelle locale peut aller jusqu'à 50 %



Q

étude menée en parallèle de l'élaboration des scénarios contrastés et résultats intégrés lors du choix de la stratégie (bureau d'étude CESAME, 2015)

Phase 1 : état des lieux résultats

Etude adéquation besoins /ressources

étude menée en parallèle de l'élaboration des scénarios contrastés et résultats intégrés lors du choix de la stratégie (bureau d'étude CESAME, 2015)

Phase 2 : diagnostic et proposition

méthode

- Estimation des besoins du milieu et de l'impact sur les habitats ⇒ <u>utilisation de la</u> <u>méthode Estimhab (CEMAGREF) pour faire le lien entre débit et capacité d'accueil</u>
 - mise en place du protocole terrain sur 8 stations
- établissement d'une corrélation entre l'impact hydrologique et l'impact sur les habitats liés aux prélèvements
- •Prise en compte d'autres enjeux qui peuvent justifier de limiter l'impact hydrologique pour améliorer le fonctionnement des milieux ⇒ espèces patrimoniales, dilution des rejets, température de l'eau, altération éco-morphologique
- •Prise en compte de l'évolution de la ressource et de l'évolution des besoins
- •Proposition de stratégies de gestion quantitative ⇒ traduction en volumes maximums prélevables et DOE avec pour objectifs :
 - améliorer le fonctionnement du milieu sur les secteurs impactés
- anticiper l'avenir : le changement climatique va conduire à une baisse de la ressource naturelle (estimée à 6 % en moyenne, 10 % sur QMNA5 d'ici 2030)
 - -mettre en évidence les marges de manœuvres et les limites

Etude adéquation besoins /ressources

Q

étude menée en parallèle de l'élaboration des scénarios contrastés et résultats intégrés lors du choix de la stratégie (bureau d'étude CESAME, 2015)

Phase 2 : diagnostic et proposition

résultats

- Réduction des débits d'étiage naturels par les prélèvements en situation actuelle répartie en 5 classes ⇒ 0 à -5 % / -5 à -10 %/ -10 à -20 %/ -20 à -50 %/ > à -50 % jusqu'à -15 % de perte de débit d'étiage quinquennal, l'impact sur les habitats piscicoles est faible ⇒ pertes <5 % de SPU (surface pondérée utile)
- •Etude de plusieurs stratégies ⇒ analyse de leurs conséquences sur les milieux et les usages (effort de réduction des prélèvements et solutions possibles)
 - avec des variantes : homogène ou différenciée selon les enjeux par secteurs
 - en visant un niveau d'impact limité à QMNA5 5 à -10 % ou gain d'une classe
- -avec prise en compte du changement climatique (ce qui revient généralement à baisse de 10 % des prélèvements pour maintien niveau impact actuel)
- Proposition d'une stratégie compromis entre satisfaction des besoins et préservation du milieu, tenant compte des enjeux locaux / de l'évolution climatique / de la difficultés de réduire les prélèvements sur les secteurs les plus sollicités actuellement, de la cohérence amont/aval.

ETUDE RESSOURCE EN EAU ET BESOINS DU SAGE DU LIGNON DU VELAY 10 - PROPOSITION DE MARGES ET RÉDUCTIONS DES PRÉLÈVEMENTS Réseau hydrographique Bassin versant du Lignon du Velay Principal Sous-bassin versant de la Dunière Secondaire Plan d'eau Villes principales SYNTHÈSE DES STRATÉGIES +2 000 m³ +1 000 m³ -1 200 m³ +1 500 m +400 m³ +100 m3 +1-500 m³ -21 000 m³ +1 000 m³ +300 m 7 +500 m³ 1+440 m³ **Objectif** +170 m³ QMNA - 5 % QMNA - 10 % QMNA - 20 % 000 m Marge de prélèvements +1 000 m³ 10 000 m³ Pau de St. 73 2 000 m³ Réduction des prélèvements +5 000 -2 000 m³ -10 000 m³ **CESAME** 8 km Sources: - BDcarthage@-®IGN, 2013, SANDRE Référence : 1725/2015

Etude adéquation besoins /ressources

Phase 2: diagnostic et proposition résultats

Projet de SAGE Lignon du Velay

Protéger et mieux gérer la ressource en eau

Volet quantitatif

Disposition 1.1 : Encadrer les prélèvements

Définition des volumes maximums disponibles

Stratégie de gestion de la ressource sur les bassins impactés

Règle 1 : Encadrer les volumes maximums disponibles

Disposition 1.2 : Mettre en œuvre un plan de gestion de la ressource en eau

Amélioration du suivi des ressources

Révision arrêté cadre sécheresse / Schéma NAEP Deves-Velay si besoin

Centralisation et suivi des données prélèvements

Sensibilisation

Disposition 1.3 : Sécuriser les usages

Sécurisation de l'AEP par interconnexion, diversification de la ressource

Sécurisation par ouvrages de stockage (autres usages)

Disposition 1.4 : Réduire les prélèvements sur les ressources et les besoins en eau

Amélioration des réseaux AEP

Incitation aux économies d'eau des différents usagers

★ Action **⊠** Gestion

X Action

☆ Action **⊗**Gestion

Protéger et mieux gérer la ressource en eau

Volet quantitatif

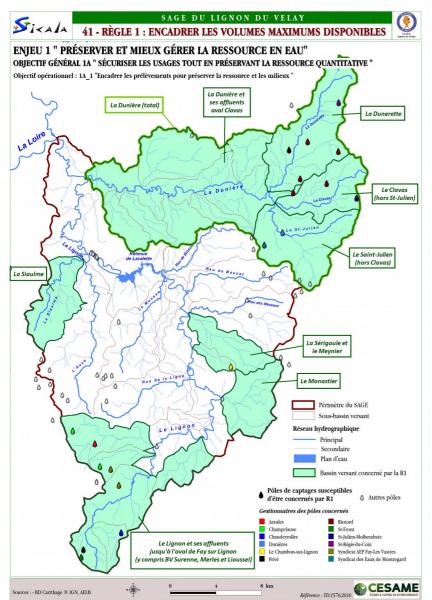
Q

Zoom sur la disposition 1.1 : Encadrer les prélèvements et la règle 1 « encadrer les volumes maximums disponibles »

<u>Principe</u>: Définition de volumes maximums disponibles pour les usages (hors prélèvements diffus), par sous-bassin, pour 3 mois étiage (1^{er} juillet au 30 septembre)

- Sur les sous-bassins peu ou non impactés ⇒ <u>augmentations de prélèvements</u> <u>possibles dans la limite des valeurs fixées par la règle 1</u>
- Sur les sous-bassins impactés ⇒ <u>objectifs de réduction des volumes prélevés en</u> <u>étiage à atteindre d'ici 6 ans (uniquement PAGD) en :</u>
- engageant une réflexion sur les incidences techniques et financières (utilisation de ressources alternatives pendant cette période)
 - proposant une stratégie de gestion de la ressource pour réduire les prélèvements
- identifiant ces sous-bassins comme prioritaires pour engager les actions permettant d'améliorer la situation (économies d'eau, restauration de ZH)

Projet de SAGE Lignon du Velay



Protéger et mieux gérer la ressource en eau

Volet quantitatif

Zoom sur la disposition 1.1 : Encadrer les prélèvements et la règle 1 « encadrer les volumes maximums disponibles »

Tableau : Volumes disponibles pour 3 mois secs (juillet à septembre)									
Bassins versants peu impactés – situation à préserver					Bassins versants impactés – situation à améliorer				
Bassins versants	Volumes disponibles (en m³/3 mois)	Volumes « encadrés » actuellement prélevés (en m³/3 mois)	Evolution des volumes prélevés (en m³/3 mois)		Bassins versants	Volumes disponibles (en m³/3 mois)	Volumes « encadrés » actuellement prélevés (en m³/3 mois)	Evolution des volumes prélevés (en m³/3 mois)	
La Dunerette	41 700 m3	23 300 m3	18 400 m3		Le Chansou	12 900 m3	4 300 m3	8 600 m3	
Le Clavas (hors St-Julien)	25 000 m3	14 300 m3	10 700 m3		L'Auze	92 400 m3	133 130 m3	-40 730 m3	
Le Saint-Julien	53 200 m3	35 700 m3	17 500 m3		Le Mousse	51 700 m3	32 800 m3	18 900 m3	
La Dunière aval Clavas hors affluents	51 600 m3	1 560 m3	50 040 m3		La Ligne	62 700 m3	39 480 m3	23 220 m3	
La Dunière et ses affluents aval Clavas	66 900 m3	8 920 m3	57 980 m3		Les Mazeaux	69 900 m3	95 500 m3	-25 600 m3	
La Dunière (total)	186 800 m3	82 020 m3	104 780 m3		Le Basset	36 700 m3	78 000 m3	-41 300 m3	
La Siaulme	21 700 m3	0 m3	21 700 m3	1 [Les Brossettes	31 400 m3	33 900 m3	-2 500 m3	
Le Lignon et ses affluents jusqu'à l'aval de Fay sur Lignon (y compris BV Surenne, Merles et Lioussel)	235 730 m3	32 140 m3	203 590 m3		Le Lignon (cours d'eau principal) de Fay jusqu'à Lavalette	153 300 m3	100 300 m3	53 000 m3	
Le Monastier	30 000 m3	0 m3	30 000 m3						
La Sérigoule et le Meynier	11 740 m3	2 350 m3	9 390 m3						

- Répartition de ce volume dans la règle entre réseau AEP (85 à 95%) et irrigation
- Seuls les prélèvements déjà soumis à la réglementation sont concernés (par ex pas les prélèvements dits « domestiques » jusqu'à 1000 m³/an)
- Marge d'augmentations possibles très supérieures à l'évolution des besoins envisagés sur les territoires concernés (par ex, sur BV Dunière correspond à la consommation d'eau supplémentaire de 6 500 pers sur 3 mois)

Appropriation de l'enjeu par les acteurs

Lignon du Velay

Une étude complète et relativement récente qui apporte des connaissances nouvelles sur le bassin

Problème des faibles débits d'étiages = un des principaux enjeux du bassin → à peu près compris

Intérêt du SAGE, apporte une vision par sous-bassin pour juger des futures autorisations de prélèvements

D'une manière générale, certains acteurs sont réticents envers le volet réglementaire de l'outil SAGE → vécu comme une contrainte supplémentaire

Des difficultés d'application du fait de la non exhaustivité des connaissances des prélèvements aux yeux de l'administration → nécessité de tenir à jour un observatoire sur l'évolution des prélèvements

Des craintes que cette règle soit comprise comme une inégalité territoriale

Stratégie quantitative retenue dans projet de SAGE traduit la volonté :

- de préserver la situation existante sur les bassins versants actuellement peu impactés
 - -d'être pragmatique en ne fixant pas dans la règle des objectifs inatteignables de réduction des prélèvements, dès le début de la mise en œuvre
- -de se donner le temps de trouver les solutions techniques pour atteindre les objectifs de réduction (qui pourront éventuellement être retranscris dans une règle lors de la révision du SAGE dans 6 ans)